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Overview

e Mixture modeling
— univariate and multivariate applications
e Characteristics of repeated measures learning data
e Nonlinear mixed-effects models
— model description and analysis
¢ Nonlinear mixed-effects mixture (NLMM) model

— model description
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Overview

o Learning data example revisited
— analytic decision points

o Issues, challenges & considerations
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Finite Mixture Models

e Karl Pearson (1894)

e Primary purposes...
— model the density of complex distributions
— model population heterogeneity

e Modeling heterogeneity = mixture of distributions from the
same parametric family

e Inferential goals
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Applications of Finite Mixture Models

e Univariate mixtures
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Applications of Finite Mixture Models

e Regression mixtures

c =2
Y = By + Bux; +ey

e Regression mixture
modeling involves
estimating separate
regression
coefficients and error
for each latent class

Boz

Bor [
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Applications of Finite Mixture Models

e Multivariate normal mixtures

— MYVN mixtures =
cluster analysis
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Applications of Finite Mixture Models

e Multivariate normal mixtures o

1m0 =27 /(3,10

-1/2

f(y,10,)=Q2x)"*|Z,| " exp —;(y,- -y, —uk)}
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Applications of Finite Mixture Models

e Multivariate normal mixtures o

Sy, |m0)= (¥, 10,)

k=

-1/2

fi(y,10)=Q2x)"|E,| " exp {—;(y,- )y, - uk)}

Advances in Longitudinal Methods Conference J. Harring 9

Applications of Finite Mixture Models

e Multivariate normal mixtures o

1m0 =27 /(3,10

fi(y,10,)=27) |, exp {—;(yi @2 (y, @}
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Applications of Finite Mixture Models

e Multivariate normal mixtures o

1m0 =27/ (3,10)

fi(y,10,)= (27r)”/”2 exp {—;(y,- - uky,- - uk)}
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Applications of Finite Mixture Models

e Growth mixture modeling

Cutcome
Cutcome

Occasions Occasions
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Applications of Finite Mixture Models

e Growth mixture modeling

y,=An, +e
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Applications of Finite Mixture Models

55

Number of Spesch Errors
25

Trial Number
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Applications of Finite Mixture Models

55

27

25
Trial Score

s

Number of Spesch Errors

Age (In Decimal Years) Trial Number

e Handle nonlinear data with a nonlinear function

e Modeling potential population heterogeneity
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Applications of Finite Mixture Models

Nonlinear Mixed-
Effects Model

Intrinsically Nonlinear Functions
N
N\
Finite Mixture
Model

Modeling Population Heterogeneity
N
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Applications of Finite Mixture Models

Nonlinear Mixed-
Effects Model

Intrinsically Nonlinear Functions

N
N +

Modeling Population Heterogeneity Finite Mixture

Model
N
Nonlinear Mixed-
Effects Mixture
Model
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Nonlinear Learning Data — Speech Errors

e Burchinal & Appelbaum (1991)

55

— Repeated measures data are
recorded speech errors on a
standard passage of text
from an instrument of
language proficiency

Number of Speech Errors
25

— A sample of 43 young
children ranging in ages . .
from 2 to 8 years Age [ Decinal Years)
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Nonlinear Learning Data — Speech Errors

¢ Burchinal & Appelbaum (1991)

55

— A maximum number of 6
repeated measures were
taken

25

— Ages at time of testings
differed for each child

Number of Speech Errors

— incomplete cases were
observed 2 ‘ 6 8

Age (In Decimal Years)

=5

— independent rating of overall speech intelligibility used as
a covariate
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Model for Nonlinear Learning Data @ﬁé

e The nonlinear mixed-effects (NLME) model is well- suited
to handle both intrinsically nonlinear functions as well as
key data and design characteristics

— continuous response

— compellingly strong individual difference in trajectories
— substantial variability in time-response across subjects
— distinct measurement occasions for each subject

— interesting nonlinear change

¥y = S Byovs Boz) ¥,
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NLME Model for Burchinal & Appelbaum Data

e Following Davidian & Giltinan (2003) : two-stage
hierarchy

e A subject-specific decelerating, decreasing exponential
function is proposed

o Stage 1: Individual-Level Model
yij - ﬂli eXp{ﬂ2i(xij - 3)} + eij
— [3. : the average number of speech errors at age 3

— [, : rate parameter that governs functional decline
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NLME Model for Burchinal & Appelbaum Data

e Stage 2: Population-Level Model

| +b,
B = Pl Bth unconditional
ﬂzl' ﬂZ +b2i

. +yvz+b.
g (/| ArrETh conditional
ﬂzi ﬁZ +7/ZZI' +b2i
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NLME Model for Burchinal & Appelbaum Data

e Distributional assumptions

b~ N(0,®)) ¢ ~N®0,A®)  covie,b)=0

cov(e,,e,)=0
cov(b,,b’)=0

var(b,,) j

cov(b,)=® =
cov(b,;,b,) var(b,,)
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NLME Model for Burchinal & Appelbaum Data

e Distributional assumptions

b~ N©0,®) e ~N(0,A(5) ) covie,b)=0

cov(e,,e,)=0

/ cov(b,,b’)=0

A =c’1

i n;

Advances in Longitudinal Methods Conference J. Harring 24




Inference NLME Model : Maximum Likelihood

e The marginal distribution of y.

hy) = [pvb)db, = [p(y,16)p0,)db,

o Let0O= (B',ﬁ',vech((l))')'

e Parameter estimation is carried out by maximizing the
log-likelihood

AGHQ (Pinheiro & Bates), l(ﬂ) =In L(G | y)
GHQ (Davidian & Gallant), .
Linearization (Lindstrom & Bates), — Z In { h(y)}
GTS (Davidian & Giltinan), = !
Bayesian...
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Analysis

e The unconditional model was fitted using SAS PROC
NLMIXED (Gaussian Quadrature — 30 points)

. p) (18.48
B ) -098
. (77.02 ,
[ 0.15 o.osj

—2InL =1227.0 BIC =1249.6
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Analysis

e The conditional model was fitted with mean-centered
covariate — SAS PROC NLMIXED (GH - 30 points)

. (B (1822 (7)) (276
L) e

. (76.84 2 *
o= 62 =9.73
~0.29 0.04

—2InL=1217.2 BIC =1246.3
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otentially Clustered Data AR

e In subject-specific models, like the NLME model, regression
parameters are allowed to vary across individuals resulting
in differing within-subject profiles

o FE(Mb,)=0& E(e)=0= assumption all subjects were
sampled from a single populations with common parameters

e Finite mixture models relax the single population
distributional assumption of the random effects and the
conditional distribution for the data to allow for parameter
differences across unobserved populations

Verbeke & Lesaffre, 1996, Verbeke & Molenberghs, 2000
Muthén & Shedden, 1999; Muthén, 2001, 2003, 2004
Hall & Wang, 2005
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LMM Model @
N ode T

e The exponential NLME model can be extended to a NLMM
model for K latent classes whereinclassk(k=1,2,...,K)

= B, exp{ B, (x,—3)} +e, e, ~N(,A))

B, =B, @ +b, b, ~N©O,®,)

. and y,,

o 1 _is the probability of belonging to class k = Zﬂ'k =1

= 0<7, <1
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NLMM Model — Getting Started @ﬁé
o Fit a series of models suppressing random effects : ® =0

& A =A

(LCGM - Nagin (1999))

e Method of deriving starting values for the mean structure of
the NLMM model

e Use NLME output to suggest starting values for ® and A
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NLMM Model — How Many Latent Classes?

e Several statistics have been proposed and recommended in
practice: AIC, BIC, SBIC, CLC, LMR-LRT (Lo, Mendell &
Rubin, 2001), BLRT, Multivariate skewness and kurtosis
indices

e Compute and plot BIC or SBIC values against number of
classes
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NLMM Model — How Many Latent Classes?

1450

1400 ‘L.
.................. No Within-Class , 1m0
| Variation LCGM s "
= e
Within-Class o 00 Ao, N
Variation NLMM
h ‘\/‘
1200

1 2 3 4
Number of Classes
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NLMM Model — How Many Latent Classes?

e Decision based on...

— theoretical defensibility

— model fit

— parsimony

— class separation and class
incidence

o Expertise of the substantive
researcher

1450

1350

BIC valuss

.....................

Number of Classes

e Do the classes represent substantively meaningful groups?
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NLMM Model — Analysis of Learning Data

!& 7 M%S

e Parameter estimates for the two-class model

NLME Class Means Class-Specific
Estimates Covariate Estimates
B Bk yk
13.24 y =—0.04 v =0.10"
( 066*) ”1:033 7/11 7/12
18.22° — 5 7 —2-76*j
-0.97" 19 45" 7, —0.08
( j =067
~1.07 py=-272" 7,=-025§
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NLMM Model — Analysis of Learning Data @ﬁg

e Parameter estimates for the two-class model

NLME Estimate Class-Specific NLME Estimate Class-Specific

Covariance Covariance Residual Residual
Matrix Matrix Variance Variance
® & =d o 6, =6’
77.02 53.65 9.73% 9 73
0.15 0.05 235 0.62°
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NLMM Model — Assessing Model Fit? @ﬁg

e The quality of the mixture based on the precision of the
classification — classification is based on estimated
posterior probabilities

e For K >2, average posterior probabilities can be computed.
A K x K matrix should have high diagonal and low off-

diagonal values indicating good classification quality

— Average Latent Class Probabilities for Most Likely Latent
Class Membership (Row) by Latent Class (Column)

1 2

1 0.854 0.146
2 0.204 0.796
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NLMM Model — Assessing Model Fit?

e Entropy — a summary measure of the classification based
on individuals’ estimated posterior probabilities can be
computed with values close to 1 indicating near perfect

classification
m K
Z Z (=72, In7,)
— i=l k=1
E =1-
mln K
E._ =073
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Graphical Summaries

e Plot predicted random coefficients on a contour plot or
surface plot
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Graphical Summaries

o Plot predicted random coefficients on a contour plot or
surface plot

0.50 1.25

=0.25
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3

Good Separation Modest Separation
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Number of Spesch Errors

Graphical Summaries

Two Latent Classes: Mean Trajectories

55
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Graphical Summaries

Fitted Curves for 4 Individuals
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Practical Issues...

e Estimation

e Computing standard errors
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Log-likelihood @ﬁg

o Letn'=(x,....7 )

o Let& =B, vech(®,),vech(A)))
e Let0=(x',&) all model parameters, then the log-likelihood
[(8)=InL(B]y)
“in([TXmh () where 7(y)= [p.0y,1b)p,b)ab,

i=l k=l
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Estimation @
i i AR

o If the nonlinear regression coefficients are fixed across
individuals : Mplus (however — does not handle unique
measurement occasions)

Y, = b, eXp{ﬂz (x, —3)} +e,

e Directly maximize the log-likelihood using gradient methods
like N-R or Quasi-Newton

e Use EM (Expectation — Maximization) algorithm treating
class membership as missing data
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Standard Errors @ﬁé

e Direct maximization uses the diagonal elements of the
Hessian matrix at convergence for a model-based estimate
of the standard errors.

e EM algorithm — no standard errors are computed as a by-
product of the algorithm

— At convergence, use a direct maximization step to
produce SE
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More Practical Issues and Future Considerations... @ﬁé

e Evidence of local extrema

e Covariates predicting individual coefficients & class
membership

e Does the method of handling the intractable integration
influence the number of latent classes?

e Normality of the random effects distribution: non-
parametric alternatives?
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